Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Organ Transplantation ; (6): 161-2022.
Article in Chinese | WPRIM | ID: wpr-920845

ABSTRACT

3D bioprinting is an advanced manufacturing technology that utilizes biomaterials and bioactive components to manufacture artificial tissues and organs. It has been widely applied in multiple medical fields and possesses outstanding advantages in organ reconstruction. In recent years, 3D bioprinted organs have made an array of groundbreaking achievements. Nevertheless, it is still in the exploratory stage of research and development and still has bottleneck problems, which can not be applied in organ transplantation in vivo. In this article, the application of 3D printing technology in medicine, characteristics of 3D bioprinting technology, research hotspots and difficulties in bionic structure, functional reconstruction and immune response of 3D bioprinted organs, and the latest research progress on 3D bioprinting technology were illustrated, and the application prospect of 3D bioprinting technology in the field of organ reconstruction was elucidated, aiming to provide novel ideas for the research and clinical application of organ reconstruction and artificial organ reconstruction, and promote the development of organ transplantation and individualized medicine.

2.
Chinese Journal of Tissue Engineering Research ; (53): 524-531, 2020.
Article in Chinese | WPRIM | ID: wpr-848133

ABSTRACT

BACKGROUND: It is still difficult to construct tissue-engineered anulus fibrosus scaffolds which have bionic structure, suitable biodegradability and good biocompatibility. OBJECTIVE: To fabricate bionic biodegradable scaffolds with polycaprolactone (PCL) and polydioxanone (PDS) and evaluate the feasibility as a tissue-engineered annulus fibrosus scaffold. METHODS: Five groups of scaffolds at different PCL/PDS proportions were prepared by melt spinning technique: PCL, PCL/PDS70/30, PCL/PDS50/50, PCL/PDS30/70, and PDS groups. Scanning electron microscopy was used to observe the structure and measure the fiber diameter and pore size of these prepared scaffolds. The mechanical properties and contact angle of the scaffolds were measured. The in vitro and in vivo biodegradation of the scaffolds were observation by in vitro simulation and subcutaneous implantation. The expression of inflammatory factors interleukin-1β and tumor necrosis factor-α in the biodegraded tissues was detected. Human Wharton’s jelly mesenchymal stem cells were cultured for 7 days. Cell viability and proliferation was determined by live/dead cell staining. This study was approved by the Medical Ethics Committee of Tianjin Hospital, China on March 2, 2016. RESULTS AND CONCLUSION: Scanning electron microscopy results showed that the thickness of the scaffold fibers was uniform and the angle between fibers was 60°. The mechanical properties analysis showed that the tensile and compressive modulus of the PDS group was the lowest, which did not meet the mechanical requirements of the anulus fibrosus; the tensile and compressive modulus in the PCL group was the highest, and those in the PCL/PDS70/30 and PCL/PDS50/50 group were moderate. Hydrophilicity test showed that higher PDS proportion led to better hydrophilicity. Biodegradation test showed that the biodegradation of pure PDS and PCL/PDS30/70 was too fast, that of PCL was too slow, and that of PCL/PDS70/30 and PCL/PDS50/50 was appropriate. Analysis of inflammatory response around the biodegraded tissue showed that higher proportion of PCL in the scaffold resulted in more severe inflammatory response. CCK-8 and live/dead cell staining showed that human Wharton’s jelly mesenchymal stem cells had good proliferative activity and high survival rate in the PCL/PDS70/30, PCL/PDS50/50, and PCL/PDS30/70 groups. These results suggest that scaffolds in the PCL/PDS70/30 and PCL/PDS50/50 groups can simulate the structure of natural annulus fibrosus, have appropriate biodegradability, excellent mechanical properties and good biocompatibility, which make it a suitable candidate for tissue-engineered annulus fibrosus scaffold.

SELECTION OF CITATIONS
SEARCH DETAIL